Structural basis of RNA recognition and dimerization by the STAR proteins T-STAR and Sam68.

نویسندگان

  • Mikael Feracci
  • Jaelle N Foot
  • Sushma N Grellscheid
  • Marina Danilenko
  • Ralf Stehle
  • Oksana Gonchar
  • Hyun-Seo Kang
  • Caroline Dalgliesh
  • N Helge Meyer
  • Yilei Liu
  • Albert Lahat
  • Michael Sattler
  • Ian C Eperon
  • David J Elliott
  • Cyril Dominguez
چکیده

Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-binding domain. Their specificity of RNA recognition is thought to arise from their property to homodimerize, but how dimerization influences their function remains unknown. Here, we establish at atomic resolution how T-STAR and Sam68 bind to RNA, revealing an unexpected mode of dimerization different from other members of the STAR family. We further demonstrate that this unique dimerization interface is crucial for their biological activity in splicing regulation, and suggest that the increased RNA affinity through dimer formation is a crucial parameter enabling these proteins to select their functional targets within the transcriptome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural analysis of the quaking homodimerization interface.

Quaking (QkI) is a prototypical member of the STAR (signal transducer and activator of RNA) protein family, which plays key roles in posttranscriptional gene regulation by controlling mRNA translation, stability and splicing. QkI-5 has been shown to regulate mRNA expression in the central nervous system, but little is known about its roles in other tissues. STAR proteins function as dimers and ...

متن کامل

The Tissue-Specific RNA Binding Protein T-STAR Controls Regional Splicing Patterns of Neurexin Pre-mRNAs in the Brain

The RNA binding protein T-STAR was created following a gene triplication 520-610 million years ago, which also produced its two parologs Sam68 and SLM-1. Here we have created a T-STAR null mouse to identify the endogenous functions of this RNA binding protein. Mice null for T-STAR developed normally and were fertile, surprisingly, given the high expression of T-STAR in the testis and the brain,...

متن کامل

T-STAR/ETOILE: a novel relative of SAM68 that interacts with an RNA-binding protein implicated in spermatogenesis.

RBM is an RNA-binding protein encoded on the Y chromosome in mammals and is expressed only in the nuclei of male germ cells. Genetic evidence from infertile men implicates it in spermatogenesis, but its function is unknown. Of a number of potential partners for RBM identified by a yeast two-hybrid screen with testis cDNA, the most frequent isolates encoded a novel RNA-binding protein, termed T-...

متن کامل

The quaking I-5 protein (QKI-5) has a novel nuclear localization signal and shuttles between the nucleus and the cytoplasm.

The mouse quaking (qk) gene is essential in both myelination and early embryogenesis. Its product, QKI, is an RNA-binding protein belonging to a growing protein family called STAR (signal transduction and activator of RNA). All members have an approximately 200-amino acid STAR domain, which contains a single extended heteronuclear ribonucleoprotein K homologue domain flanked by two domains call...

متن کامل

Structural investigations of the RNA-binding properties of STAR proteins.

STAR (signal transduction and activation of RNA) proteins are a family of RNA-binding proteins that regulate post-transcriptional gene regulation events at various levels, such as pre-mRNA alternative splicing, RNA export, translation and stability. Most of these proteins are regulated by signalling pathways through post-translational modifications, such as phosphorylation and arginine methylat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016